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DYNAMIC CHARACTERISTICS OF A VIBRATING BEAM WITH

PERIODIC VARIATION IN BENDING STIFFNESS

JOHN S TOWNSEND

ABSTRACT - A detailed dynamic analysis is performed of a

vibrating beam with bending stiffness periodic in the spatial

coordinate. Using a perturbation expansion technique the

free vibration solution is obtained in a closed-form, and the

effects of system parameters on beam response are explored.

It is found that periodic stiffness acts to modulate the modal

displacements from the characteristic shape of a simple sine

wave. The results are verified by a finite element solution

and through experimental testing.
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DEFINITION OF SYMBOLS

Definiton

- Peak stiffness variation, A = (EImax - EImin) / 2

- Factor defined by equation (A-2)

- Differential element length

- Denotes differentiation with respect to

position

- Geometric average stiffness of beam design,
EIa = (EImax + EImin) / 2

- Bending stiffness function

- Dummy variable referring to mode number

- Span length

- Period of the stiffness function

- Dummy variable referring to mode number

- Mass per unit length

- Vibration mode number

- Denotes nth mode eigenfunction, bending

- Distance along span measured relative to support

- Dimensionless horizontal coordinate, x = x/L

- Kronecker delta function, equation (i0)

- Stiffness perturbation parameters, 6 = A / EIa

,,,,,

- Dimensionless eigenvalue, X/x_ =
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DEFINITION OF SYMBOLS (cont.)

Symbol Definiton

_n,

)kr_t

,0

(_rl

_,

qS_

C0n

J

/

- Zeroth-order eigenvalue solution

- First-order eigenvalue solution

- Second-order eigenvalue solution

- Pi

- Stiffness parameter, p = 1,2,3

ie., the number of half periods _ = 2 L / Lt

- Dimensionless Eigenfunction, _ = Un / L

- Zeroth-order eigenfunction solution

- First-order eigenfunction solution

- Second-order eigenfunction solution

- Denotes nth mode frequency, bending

- Partial derivative notation

- Integral sign

- Summation sign
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DYNAMIC CHARACTERISTICS OF A VIBRATING BEAM WITH

PERIODIC VARIATION IN BENDING STIFFNESS

INTRODUCTION

Vibrating beam theory has been considered extensively

in the literature for any number of variable property states,

ranging from structures with changing cross-sectional geometry

to those of a composite nature. Solutions are obtained either

in closed-form for a few simple cases, or they are pursued

using numerical techniques. In the present study, a perturba-

tion expansion technique applicable to continuous systems is

used to develop a closed-form solution to the problem of a

vibrating beam with bending stiffness periodic in the spatial

coordinate. Results are compared to a finite element solution

and verified experimentally using forced vibration of a test

span. To the knowledge of the author, this specific beam

problem (static or dynamic) has not been addressed in the
literature.

Application of periodic stiffness is recognized in the field

of vortex-induced motion of transmission power lines £i].

In recent years a conductor, known as twisted-paired, has been

developed that uses a variable diameter design to provide a

changing conductor profile into the wind. Twisted-paired

conductors are constructed by twisting together two identical

standard round conductors with 360 degree twists occurring at
set intervals along the span. The periodic nature of the twist

causes a periodic variation in bending stiffness. Variable

profile diameter results in non-uniform shedding of vortices,

and hence excitation frequences, along the span. Multiple

vortex frequencies act to minimize wind energy transfer and

detune vibration response. In conductor systems, influence

of bending stiffness effects becomes extremely important in

the vicinity of supports.

The purpose of this report is to characterize the dynamic

bending behavior of beams with periodic stiffness variation.

Also, the models developed will provide insight into the behavior

of similar type systems with changing property states.
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EQUATIONS OF MOTION AND BASIC ASSUMPTIONS

Consider the problem of the transverse vibrations of a

straight beam with periodic variation in bending stiffness

along its length. The beam is assumed to be simply supported

and long compared to its cross-sectional dimensions, and dynamic

shear distortions and rotary inertia are negligible. We will

also make the usual simplifying assumptions that Hooke's Law

holds and plane sections remain plane. Figure 1 shows a free

body sketch of a differential element of the vibrating beam.

We will proceed from the well-known differential equation

of motion for the normal mode response of an undamped beam

(i)

where EI(x) is the bending stiffness function, _ is the mass per

unit length, Un(x) is the nth normal mode displacement and _x)n is

the nth normal mode frequency. The bending stiffness function

is given by

/--T
(2)

where Ela is the geometric average stiffness of the beam

design, EIa = [EImax + EImin] / 2 ; and A is the peak stiffness

variation, A = [EImax - EImin] / 2. The period of the stiffness

function is Lt. Figure 2 plots the function. Notice, at X = 0,

the maximum flexural stiffness occurs, and the periodicity of the

function is an even multiple of the span length. This particular

stiffness function is characteristic of twisted-paired systems [13.

An equation of motion that models an undamped, vibrating beam

with periodic bending stiffness is determined by combining equations

(i) and (2). The result is a fourth-order differential equation

with variable coefficients. A closed-form approximate solution to

this boundary value problem is obtained by using a variation of

the Rayleigh-Schrodinger expansion [2,3]. The solution in closed-

form is extremely useful, since it clearly displays the influence

of system parameters on response. Nayfeh [4] presents an applica-

tion of a similar perturbation formulation for a simple linear

second-order eigenvalue problem.
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A dimensionless form of the governing motion equation is

3)

(See nomenclature section for a definition of terms.

and the corresponding boundary conditions for the case of simple

supports are

) 0 ,;4)

and

(_rl// //

The quantity [I + £cosp_x] is the dimensionless bending stiff-

ness. For convenience, the tildes are dropped in the remaining

analysis. The coefficient 6 is a measure of the magnitude of

the stiffness variation, 6 = A / EIa , and the parameter p is

equal to the number of half periods of the stiffness function

in a given span, p = 2 L / Lt.

PERTURBATION EXPANSION SOLUTION

The solution ( __ • k ) of equation (3) is a function of the

independent variable x and the parameters 6 and p If the

parameter 6 is equal to zero, the equation reduces to the case

of a vibrating beam with uniform flexural stiffness whose eigen-

functions and eigenvalues are given, respectively, by

(6)

z 4 4

(7)
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The _ coefficient is arbitrary. It is picked so that the eigen-

functions are normalized according to the integral function,

I

4> d×.rl.

G

- / (8)

The above eigenfuctions are orthonormal; i.e.,

/

i
i _ o

0

where, _m_,the Kronecker delta function is specified as

(9)

_ { O nl -?-r__mn I m -_
(i0)

When 6 does not equal zero, equations (6) and (7) are no

longer valid and corrections must be added to them. An approxi-

mate solution is obtained by expanding both the eigenfunction and

the square of the eigenvalue in the form of a power series in
; i.e.,

(ii)

(12)

...4.
where _L_oand Ano are the eigenfunction and the square of the egen-
value when E equals zero; equations (6) and (7). An asymptotic

expansion is generally valid only if _ is small. By definition,

the parameter 6 for beams with periodic stiffness may not be small,
but it is always less than one. Corrections of the higher order

terms are therfore negligible, and the series converges eventually
to the correct solution.

606



Substituting equations (ii) and (12) into equation (3) and

equating like powers of 6 through order 6 z , we get the following

system of differential equations:

IV

"

o(_b :

The problem of finding an approximate solution to equation (3)

is now simplified to one of obtaining sequential solutions to

equations (13), (14), and (15). To illustrate the procedure, the

first-order correction is formulated in Appendix A. Equations (A-6)

and (A-8) define the correction terms of the eigenvalues and

eigenfunctions.

Using equation (A-8) and recalling that _n = _ + _ _. _

where _ = 1,2,3, . . ., the general eigenfun6t_on's61ution'"_niS

expressed in terms of dimensionless parameters for the case when

n/_12 as

_n = q-_-_b_n_rx

n (n +p)
V3- (n +pf- a4

l £_

_n _- ( n -/c,)
(16)

If n =_/ 2 , the last term in the series is secular and hence
vanishes.
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Using_equations (7), (12), and (A-6), the eigenvalue

solution An is given in terms of the first-order correction.
The result is expressed in terms of the dimensionless variables
as

Equation (17) is valid only for the vibration mode n = p / 2.
For all other vibration states the first-order correction term

is zero. The second-order perturbation solution of the eigenvalue

is determined using the same techniques previously developed for

finding the first-order terms. Details of the formulation are out-

lined in Reference [I]. The general eigenvalue solution XN of
the second-order expansion is given as

The first-order correction term in equation (18) is equal to zero

for the vibration modes where n /p/ 2. For the case defined by

n = p/ 2, the last term in the second-order _rrection is specified
to vanish (ie., this term is secular from 5U_l solution). Notice

that the eigenvalue X n simplifies to the case of a beam with

uniform stiffness when the perturbation parameter E is equal to
zero.

The general behavior of a beam with periodic bending stiff-

ness variation is given by equations (16) and (18). As the

vibration state approaches the anomaly occurring at n =p/ 2, the

eigenfunction solution deviates from a simple sine wave displace-
ment curve to a mode shape comprising other harmonics. For the

case when n = p/2, the eigenfunction returns to the sine wave shape.

The eigenvalue solution responds in a similar nature. At n = / 2

a jump in the eigenvalue occurs, since for this mode the harmonics

of the stiffness function are secular. Results of the closed-form

perturbation analysis have been checked using finite element results
and results of experimentation.
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EIGENFUNCTIONS AND EIGENVALUES

Effects of the perturbation terms on the eigenfunction

solution are exemplified in Figure 3. The magnitudes of the

bracketed terms in equation (16) are plotted as a function of

the _/n ratio. Two distinct ranges are apparent; _ /n < 1

and near p /n = 2. In these ranges, the perturbation effects

are the strongest. At p /n = 2, a vibration state is defined

where the lengths of the vibration loops match the period of

the stiffness function. Based on the stiffness definition given,

this mode defines maximum stiffness at the nodes of the vibra-

tion loops and minimum siffness at the antinodes. At p/n = i,
both the maximum and minimum stiffnesses occur at the node

positions in alternating sequence along the span.

Figures 4 and 5 give eigenfunction comparisons of vibration

modes in the general modal solution range. The vibration displace-

ment amplitudes are normalized and plotted verses the normalized

horizontal span coordinate (X/L). Recall, boundary conditions are

simple support and beam orientation at the supports is for maximum

stiffness. Figure 4 plots eigenfunction solutions near the anomaly

_/n = 2, where _ = 64 and _ = 0.4. The effect of periodic

stiffness is to modulate the displacements of those vibration modes

approaching the anomaly at n = p /2, or for this case mode 32.

Similar displacement curves as patterned for modes 31 and 33 are

characteristic of all vibration modes near the anomaly. Close exam-

ination of the eigenfunctions reveals that the node (or antinode)

locations are adjusting themselves along the span, and the longer

vibrating loops result in lower midloop displacement amplitudes.

Apparently, the beam attempts to minimize the elastic strain energy
stored within the dynamic span by adjusting the lengths of the

vibrating loops until the same average bending siffness exists acro_

each individual loop. Equalizing the loop stiffnesses may require

the loops to have different legnths depending on the vibration mode,

and a longer loop has greater mass. An equal partioning of potentia

energy and thus kinetic energy between each of the loops results in

lower vibration amplitudes for the longer vibrating loops. Loop

stiffness calculations verify this reasoning.

At the anomaly, modulation in the mode shape disappears, since

for this case the individual loop stiffnesses are equal (ie., the

lengths of the vibration loops match the period of the stiffness

function). The same basic reasoning holds true for the case where

_/n = i, see Figure 5. Here also, the mode shape is sinusoidal

- no modulation; and average loop stiffnesses are equivalent with

maximum and minimum values defining the nodes of each loop. Add-

itional cases identified in Figure 5 are for small and large values

of _/n. As _ /n approaches zero, perturbations in the mode shape

increase. At the opposite end of the scale, where the _ /n para-

meter goes to infinity, the displacement shape is sinuso'idal.

Figure 6 characterizes the eigenfunction solution as a function of

the perturbation parameter, 6 As the magnitude of Epsilon (ie.,

the stiffness variation) increases, the modulation effects become

more pronounced.
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Eigenvalue solutions of the 2nd order perturbation expansion

for different cases of p are plotted in Figure 7 versus the respec-

tive vibration mode. At the anomaly, _ /n = 2, a jump in the eigen-

value occurs. The intensity of the jump increases with_ . Physic-

ally, the jump identifies a sharp change in frequency (or stiffness)

between characteristic modes of vibration. Mathmatically, the jump

is equivalent to removing the secular nature of the stiffness func-

tion from the eigenfunction solution.

The closed-form perturbation expansion solution has been

verified through comparisons with a finite element solution [I].

Although the findings are not formally documented herein,

agreement between the analytical results is excellent. Some

discrepancy does occur in the vicinity of the stiffness anomaly.

This is apparently due to a sudden change in bending stiffness.

Nevertheless, the qualitative picture remains the same. Two

characteristic effects of periodic bending stiffness on dynamic

response are determined: (I) periodic stiffness forces an anomaly

in the system which results in a jump in the natural frequency,

and (2) periodic stiffness acts to modulate the modal displacements

in distinctive ranges of _/n. A qualitative explanation of the

modulation and its effects on beam response is given in terms of

energy principles.

EXPERIMENTAL VERIFICATION

A series of tests were designed to investigate the dynamic

response of beam type systems which have a periodic variation in

bending stiffness. A stiff-string structure, known as a twisted-

paired conductor, was the test candidate in the program.

Table 1 summarizes the experimental test parameters and Figure 8

shows a photograph of the test span. Periodic variation in

diameter profile of the twisted-paired conductor is compared to

the uniform diameter of a standard conductor design. In stiff-

string systems, elastic strain energy is stored in tension and

bending. If tension is constant along the span, then tension has

minimal effect towards equalizing the variable flexural stiffness

of the vibrating loops [I]. In other words, tension effects do

not mask the effects of stiffness variation.

Experimental data are compared to the finite element results

for free vibration since the fixed boundary conditions are applic-

able. This type of boundary support keeps the end losses to a

minimum. Internal damping of the conductor was also reduced by

applying a high tension line force. The procedure of minimizing

conductor system damping is necessary; higher harmonics are

difficult to excite if mechanical damping is significant. The

testing program used forced vibration responseto study free

vibration. If the span is tuned properly to a single natural

frequency, contributions from all other harmonics are minimal.

The vibration exciter unit was positioned near the span center

to eliminate even harmonics from the general response. The added

mass of the moving shaker element and span attachment fixture

resulted in a shortening of the drive loop, and thus a lowering
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of its vibration amplitude. No attempt was made to decouple

shaker mass from the conductor span. A V-scope attached to the

center of each vibrating loop was used to measure the midloop

amplitude displacements. The device is inexpensive and its accuracy
is remarkable at 0.01 inches.

Typical test results are presented in Figures 9 and I0.

Finite element displacement amplitudes are normalized using a

method previously outlined, see equation 8. Experimental

amplitudes are normalized to one of the measured values - chosen

in arbitrary fashion. Span length is used to nondimensionalize

the horizontal coordinate. Since mode shape is symmetric about

the span center, data results are shown only for half the span.

Figure 9 gives the comparison for mode 27, an eigenfunction near

the anomaly in the system occurring at n = 32. Although the com-

parison is not exact, the modulation in the eigenfunction response

is proved physically to exist. The same general results are re-

ported for all other modes near the anomaly. Figure I0 compares

the experimental and analytical data of mode 19, an eigenfunction

well removed from the stiffness anomaly. Agreement between the

analytical and test data is excellent and the mode shape is

sinusoidal. Some discrepancy does occur in the node positions

near the drive location where the measured loop lengths are shorter.

Shacker attachment changes the stiffness and mass of the drive loop.

Shifting of the nodes tends to compensate for these effects.

CONCLUSIONS

The dynamic response of beams with periodic stiffness

contrasts significantly with the vibration behavior of standard

beams. Linear vibration theory was used to develop a stiffness

model and characterize response. Using a perturbation expansion,
a closed-form solution of free vibration was formulated for the

case of simple supports and periodic stiffness variation. The

technique worked exceptionally well when the stiffness parameter

was slowly varying. Applications of variable tension, mass, and

area are natural extensions of the theory. The main conclusions
are summarized below.

. Periodic bending stiffness forces an anomaly in

the system which corresponds to the vibration state

where the loop length matches the period of the

stiffness function. Physically, the anomaly denotes

the vibration mode for which loop stiffness changes

most _apidly. The result is a jump in natural freq-

uency. The perturbation solution loses some accuracy

for those vibration modes near the anomaly; however,

the qualitative characteristics of the response
remain the same.

. The stiffness parameter acts to modulate the modal

displacements in two distinct ranges of vibration:

/n < 1 and near p /n = 2. Experimental evidence
is presented which supports these findings.
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3. Modulation in modal displacements is explained

in terms of energy principles. The beam attempts

to minimize the elastic strain energy stored

within a dynamic span by adjusting the lengths of

the vibrating loops until the same average bending

stiffness exists across each individual loop.

Equalizing the loop stiffnesses may require the

loops to have different lengths depending on the
vibration mode, and a longer loop has greater mass.

An equal partitioning of potential energy and thus

kinetic energy between each of the loops results in

lower vibration amplitudes for the longer vibrating
loops.
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APPENDIX A

FIRST-0RDER CORRECTION TO THE PERTURBATION SOLUTION

The first step in the first-order correction to the perturbation

solution is to substitute the zeroth-order solution, equations (6)

and (7), into equation (14). After taking the appropriate derivatives

and using trigometric identities, the result simplifies to

_, - _ ¢o, = _ Xo, a_ _x

2

(A-l)

Next, assume that the solution Cnlcan be expressed as

bination of the zeroth-order eigenfunctions Cno ;

a linear com-

oo

-wZ Anm _ _X

This solution satifsies the boundary conditions o_ .derivatives and substituting into equation (A-l) ie_ds

(A-2)

Taking

ao

_=I

Xn, ,d_n_-x - n-n-_4(n+P)Z,_(n+,o)';rX
a

2.

2

(A-3)

Multiplying equation (A-3) by sin k_x and interating from 0 to 1

using the orthonormal property, equatio D (9), we obtain
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I

0

I

Z 4 f_ (A-4)4x
J

0

If k = n, the left-hand side of equation (A-4) vanishes, hence

(A-5)

The above integral expressions evaluate only when n = , 12, that

is when the vibration mode number corresponds to the span length-

stiffness function ratio (n = LILt). This is the anomaly that

makes the periodic stiffness problem so interesting.

Equation (A-5) then calculates the eigenvalues of the first-

order expansion as

%

Note, Anl = 0 for all other values of n. The above condition removes

the secular terms from the solution when k = n. If k # n, then

equation (A-4) simplifies to

I

- r/_(7_+/o)_ /
0

I'

-nz( r'-P)a/ 5_( n- p)_rx _ K_rXc{_
K'_ _ 774

0

(A-7)
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Because of the stipulations on the parameter p , Ank in equation

(A-7) calculates non-zero values only for the two cases:

(i) k " n + _ and (2) k = n - _ , wher n / _ 12. The

general solution of the eigenfunction _l,given by equation (A-2),

is finally expressed as

(A-8)

- nZ(n -p)Z +

For the vibration mode corresponding to n = p /2, the second term

in equation (A-8) vanishes, since for this mode it i@ secular in

nature. Keeping this in mind we can say that the ?_ solution is
valid for all vibration states where p = 1,2,3,. • IThe

coefficient Ann is determined by the normilizinq function

I

o

I _X : 0 (A-9)

For this case, Ann is calculated to equal zero.
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